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INTRODUCTION 
 

Approximately half of the human invasive breast carcinomas overexpress HER2 and/or EGFR and the 
overexpression leads to more aggressive tumor behaviors and shortened patient survival. Both receptors 
are important targets of breast cancer therapy. However, despite the apparent promise of some of these 
therapies, HER2- and EGFR-based regimens have their limitations and need improvement (1, 2). The 
goals of this Idea Expansion Award are to gain insights into the malignant biology and drug-resistant 
phenotype of EGFR- and/or HER2-overexpressing breast cancer and to use the acquired knowledge for 
the development of a sensitization strategy that will improve EGFR- and HER2-targeted therapies. The 
immediate objective of this project is to define the biological significance and therapeutic implications of the 
novel HER2-PUMA and EGFR-PUMA crosstalks in breast cancer. Our hypothesis is two-fold. 
 
First, we hypothesize that the HER2-PUMA and EGFR-PUMA signaling crosstalks modulate PUMA-
mediated apoptotic pathway and regulate cellular functions of HER2 and EGFR, together 
contributing to the aggressive behavior of HER2- and EGFR-overexpressing breast cancer. The 
rationales are: (i) A paradox was uncovered that the majority (83%) of the invasive breast carcinomas with 
overexpressed HER2 and/or EGFR also expresses the potent apoptosis inducer PUMA, p53-upregulated 
modulator of apoptosis and a member of the Bcl-2 family of proteins (3). (ii) Both HER2 and EGFR interact 
with PUMA constitutively and under the treatments with kinase inhibitors in breast cancer cells. (iii) 
Although PUMA has been reported to primarily localize on mitochondrial membranes (4, 5), we found that 
PUMA is sequestered in the cytoplasm of EGFR-overexpressing breast cancer cells where it is not 
functional. (iv) Subsequent to the interactions, PUMA is tyrosine-phosphorylated by HER2 and EGFR. 
These results point to the possibility that HER2 and EGFR may modulate PUMA via two modes of actions: 
interacting with PUMA to prevent PUMA mitochondrial translocalization in a kinase-independent fashion, 
and phosphorylating PUMA to modulate its functionality in a kinase-dependent manner. (v) Since protein-
protein interactions can cause reciprocal effects on both proteins, we postulate that the HER2-PUMA and 
EGFR-PUMA interactions modulate cellular functions of both receptors. We will test this hypothesis by 
studies proposed in Specific Aims 1 and 2.  
 
Second, we postulate that PUMA’s apoptotic function is associated with breast cancer response to 
HER2- and EGFR-targeted therapies and that restoring PUMA-mediated intrinsic apoptosis will 
sensitize breast cancer to the therapies. This is founded on the following rationales: (i) PUMA’s 
apoptotic function is compromised by HER2 and EGFR. (ii) Ectopic PUMA expression increases apoptotic 
response in breast cancer cells. (iii) The BH3 mimetic ABT-263 that mimics PUMA’s apoptotic activity 
sensitizes breast cancer cells to the Iressa and lapatinib. We will test this hypothesis by the studies 
proposed in Specific Aim 3. 
 
To test the afore-mentioned hypothesis, we will conduct three Specific Aims: 
 
1) Characterize the HER2-PUMA and EGFR-PUMA crosstalks in breast cancer cells.  
2) Investigate the biological consequence(s) of the phosphorylation of PUMA by HER2 and EGFR in 

breast cancer.  
3)  Determine the extent to which PUMA’s apoptotic function is associated with breast cancer response 

to HER2- and EGFR-targeted therapies.  
  
Successful accomplishment of these aims could lead to a greater understanding of the malignant biology 
and the drug-resistant phenotype of nearly half of the invasive breast carcinomas with HER2 and/or EGFR 
overexpression which makes them more aggressive. The outcome could also provide a rationale to restore 
PUMA’s apoptotic function as a novel strategy that sensitizes aggressive breast cancer to HER2- and 
EGFR-targeted therapies.  
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BODY 
 

PUMA is primarily localized in the cytoplasm of HER2- and EGFR-overexpressing breast cancer 
cells, where PUMA is dysfunctional (Task 1-a).  To help determine the extent to which HER2 and EGFR 
modulate PUMA subcellular locations in breast cancer cells, we first analyzed a panel of human breast 
cancer cell lines for expression levels of all three proteins. As shown in Figure 1, the majority of breast 
cancer cells lines analyzed expressed PUMA and some of them co-expressed PUMA and HER2/EGFR. 
Next, we selected a HER2-overexpressing and an EGFR-overexpressing cell lines, fractionated the cells 
into mitochondrial and non-mitochondrial fractions, extracted lysates from each fraction, and determined 
PUMA expression levels using western blot analysis. As shown in Figure 2, in bother cell lines PUMA was 
primarily localized in the non-mitochondrial extracts (NME), but to a lesser degree in the mitochondrial 
extracts (ME). Mitochondrial fractionation was effective as indicated by the lack of COX IV expression in 

the NME and the absence of -actin expression in the ME. These results indicated that PUMA is primarily 
localized in the cytoplasm of HER2- and EGFR-overexpressing breast cancer cells, where PUMA is not 
functional.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PUMA knockdown increased EGFR expression  
(Task 1-b).  To examine the effects of PUMA on EGFR, we 
knockdowned PUMA expression using siRNA, treated the 
cells with and without EGF for 20 minutes, and then 
determined EGFR levels and activation status using western 
blot analysis. As shown in Figure 3, we found the PUMA 
siRNA to be effective in reducing PUMA expression while the 
non-specific (NS) siRNA served as negative controls. 
Interestingly, our results showed that PUMA downregulation 
led to increased expression of EGFR, independent of EGF 
stimulation. Consistent with the increase in EGFR, we 
observed a higher level of activated EGFR (p-EGFR) in EGF-
treated cells with PUMA siRNA compared to those with NS 
siRNA. This potentially important observation will be further 
validated using additional breast cancer cell lines with EGFR 
and HER2 overexpression.  

Figure 1. Expression profile for PUMA, HER2 
and EGFR in a panel of human breast cancer 
cell lines. Western blot analysis was conducted. 
 

Figure 2. PUMA is primarily localized in the cytoplasm of 
HER2- and EGFR-overexpressing breast cancer cells. 
Cells were fracitonated into mitochondrial and non-
mitochondrial fractions, and the lysates from both fractions 
were analyzed via western blot analysis. ME, mitochondrial 
extracts. NME, non-mitochondrial extracts. ST, staurosporine 
 
 

Figure 3. PUMA knockdown increased 
EGFR expression Cells were transfected 
with PUMA siRNA or non-specific (NS) 
control siRNA, treated with EGF for 20 min 
and analyzed by western blotting.  
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HER2 interacts with and phosphorylates PUMA in breast cancer cells (Task 2-a).  
 Using immunoprecipitation/western blotting (IP/WB) and HER2-overexpressing breast cancer cells, we 
found HER2 to interact with PUMA constitutively (Figure 4A). The HER2-PUMA interaction was sustained 
when breast cancer cells were treated with lapatinib, a dual HER2/EGFR kinase inhibitor that has 
effectively inhibited HER2 phosphorylation (Figure 4B). In line with the results of lapatinib, the HER2-PUMA 
interaction is independent of heregulin-induced receptor activation (Figure 4C). These results indicate that 
HER2 interacts with PUMA constitutively in a kinase-independent fashion. 
 Furthermore, we found that PUMA was tyrosine-phosphorylated in heregulin-stimulated HER2-
overexpressing MDA-MB-453 cells (Figure 5A). We further confirmed this results using cell-free kinase 
assays in which the reactions contained HER2 (recombinant C-terminal HER2 expressed in Sf9 insect 
cells; Promega) and pre-dephosphoryated PUMA (from HEK293 cells infected with a PUMA viral vector; 
OriGene). Reactions were subjected to WB for tyrosine-phosphorylated PUMA using an anti-
phosphotyrosine Ab (4G10; Upstate). Importantly, results of the kinase assay (Figure 5B) show that HER2 
phosphorylated PUMA at the tyrosine residue(s) and the phosphorylation was inhibited by lapatinib. 
Together, results in Figures 4 and 5 indicate that HER2 interacts with and phosphorylates PUMA.   
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 4. HER2 interacts with and phosphorylates PUMA in breast cancer cells. 

A:  HER2 interacts with PUMA constitutively in breast cancer. Antibody, Ab. Left, IP-WB. Right, WB. SK, SK-BR-3.  

B: The HER2-PUMA interaction is sustained in MDA-MB-453 cells treated with lapatinib that effectively inhibits 

HER2 phosphorylation. Left, IP-WB. Right, WB. 

C: The HER2-PUMA interaction is independent of heregulin-mediated HER2 activation in MDA-MB-453 cells. Left, 

IP-WB. Right, WB.   
 

A C B 

Figure 5. HER2 phosphorylates PUMA. 

A: PUMA is tyrosine-phosphorylated in heregulin-stimulated HER2-positive MDA-MB-453 cells. Left, IP-WB. Right, 

WB. 

B: PUMA phosphorylation HER2, as shown by cell-free kinase assay. Reactions were subjected to WB to detect 

tyrosine-phosphorylated PUMA using an anti-phosphotyrosine Ab. PUMA phosphorylation was inhibited by 

lapatinib. 

 

A B 
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EGFR interacts with and phosphorylates PUMA in breast cancer cells (Task 2-a).  
 As shown by IP/WB in Figure 6, EGFR interacts with PUMA constitutively and under the treatments 
with an apoptosis-inducer, staurosporine (ST), and the EGFR kinase inhibitor, Iressa, in MDA-MB-468 cells 
with EGFR gene amplification. In the intracellular analyses, serum-starved breast cancer cells were 
stimulated with and without EGF for 10 minutes. Total proteins were subjected to IP to pull down PUMA 
followed by WB to detect tyrosine-phosphorylated PUMA. As shown in Figure 7A-C, PUMA was tyrosine-
phosphorylated in two EGFR-overexpressing cancer cells line and the phosphorylation was enhanced by 
EGF. In Figure 7D-E, we used the cell-free EGFR kinase assay to further show that recombinant PUMA 
was phosphorylated by EGFR and the phosphorylation was inhibited by the EGFR kinase inhibitor Iressa. 
Collectively, results in Figures 6 and 7 indicate that PUMA is phosphorylated by EGFR. 
 
  
 
 
  
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

  
 
 
  
 
  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 

Figure 6. EGFR-PUMA interactions. 

A,B: EGFR interacts with PUMA 

constitutively and in the presence of 

an apoptosis-inducer, staurosporine 

(ST), and Iressa in MDA-MB-468 

cells.  

C: The EGFR-PUMA physical 

interaction was confirmed by reverse 

IP. Iressa effectiveness was indicated 

by reduced p-EGFR. 
 

A 

C 

B 

D 

A 

B 

Figure 7. PUMA is tyrosine-phosphorylated in by EGFR.    

A: IP using a rabbit PUMA Ab followed by WB with an anti-phosphotyrosine Ab. IgG: negative IP control.  

B: Reciprocal IP by a phosphotyrosine (p-tyr) Ab. IgG: negative IP control.  

C: WB.  

D,E: Cell-free EGFR kinase assay. 

 

C 

D 
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Figure  8. Three tyrosine (Y) residues are present in the 

human PUMA protein. Y-152 and Y-172 are located within the 

MLS region in which Y-152 is adjacent to the BH3 domain. 

MLS is required for PUMA mitochondrial translocation. BH3 

domain is required for PUMA binding to anti-apoptotic proteins.  
 

Creation of three non-phosphorylation PUMA mutants with single Y->F mutation (Task 2-b).  
 There are three tyrosine residues within human PUMA protein, namely, Y-58, Y-152 and Y-172 (Figure 
8). Notably, Y-152 and Y-172 are within the mitochondrial localization signal (MLS; required for PUMA 
mitochondrial entry). Y-152 is adjacent to the BH3 domain (required for PUMA binding to anti-apoptotic 
proteins). To determine which tyrosine residue(s) is phosphorylated by EGFR and/or HER2, we conducted 
site-directed mutagenesis to create non-phosphorylation PUMA mutants, PUMAY58F, PUMAY152F and 
PUMAY172F, each containing a tyrosine (Y) to phenylalanine (F) mutation. Mutant PUMA expression vectors 
were made by PCR-mutagenesis using the pHA-PUMA vector as the PCR template plasmid and DNA 
sequences confirmed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
PUMA is phosphorylated by HER2 at all three tyrosine residues (Task 2-b). 
 To determine the ability of the PUMA single mutants to undergo HER2/EGFR-dependent 
phosphorylation, we have transfected breast cancer cells with the PUMA- and non-phosphorylation PUMA 
mutants-encoding vectors. PUMA and its mutants were immunoprecipitated by an HA-tag antibody and 
then subjected to the cell-free HER2 kinase assay. As shown in Figure 9, our results indicated that all three 
single YF mutants had reduced phosphorylation compared to wild-type PUMA. The fact that each of the 
three single mutants retained phosphorylation, albeit at reduced levels, indicated that more than one 
tyrosine residue are targets of phosphorylation. Based on this result, we have created a PUMA triple 
mutant in order to determine the effects of HER2 phosphorylation on PUMA properties.  We are also 
analyzing the three single non-phosphorylation PUMA mutants for EGFR phosphorylation. 
  

Figure  9. PUMA mutants with single YF mutation 

had reduced ability to be phosphorylated by HER2. 

Breast cancer cells were transfected with the PUMA- 

and three non-phosphorylation PUMA mutants-

encoding vectors. PUMA and its mutants were 

immunoprecipitated by an HA-tag antibody and then 

subjected to cell-free HER2 kinase assay. Tyrosine-

phosphorylated PUMA was detected using a 

phosphotyrosine antibody. The bottom panel shows the 

total amount of PUMA and mutant PUMA that have 

been immunoprecipitated.  
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KEY RESEARCH ACCOMPLISHMENTS 
 

  Task 1-a: PUMA is primarily localized in the cytoplasm of HER2- and EGFR-overexpressing breast 
cancer cells, suggesting that PUMA is unable to enter the mitochondria to induce apoptosis in breast 
cancer cells with high levels of EGFR and/or HER2.   

  Task 1-b: PUMA knockdown increased EGFR expression.   

 Task 2-a: HER2 interacts with and phosphorylates PUMA in breast cancer cells.  

 Task 2-a: EGFR interacts with and phosphorylates PUMA in breast cancer cells 

 Task 2-b: Creation of three non-phosphorylation PUMA mutants with single YF mutation.  

 Task 2-b: All three PUMA single mutants had reduced phosphorylation by HER2, indicating PUMA is 
phosphorylated by HER2 at all three tyrosine residues. We have created a PUMA triple YF mutant to 
determine the effects of tyrosine phosphorylation on PUMA properties. 

 
 
 

REPORTABLE OUTCOMES 
 
Peer-reviewed publications: 
 
Carpenter, RL. and Lo, H.-W. Hedgehog Pathway and GLI1 Isoforms in Human Cancer. (invited review) 
Discovery Medicine 13:105-113, 2012. (6) 
 
Han, W. and Lo, H.-W. Landscape of EGFR Signaling Network in Human Cancers: Biology and 
Therapeutic Response in Relation to Receptor Subcellular Locations. (invited review) Cancer Letters 
318:124-134, 2012. (7) 
 
Han, W., Carpenter, RL., Cao, X. and Lo, H.-W. STAT1 gene expression is enhanced by nuclear EGFR 
and HER2 via cooperation with STAT3. Molecular Carcinogenesis. Published on-line 12 June 2012. (8) 

 
 
 

CONCLUSION 
 

Our research effort in the past award year has resulted in several interesting findings that support the study 
hypothesis: the EGFR-PUMA and HER2-PUMA signaling crosstalks modulate PUMA-mediated apoptotic 
pathway and cellular functions of EGFR and HER2, together contributing to the aggressive behavior of 
invasive breast cancer. First, we observed that PUMA was primarily localized in the cytoplasm of HER2- 
and EGFR-overexpressing breast cancer cells, suggesting that PUMA is unable to enter the mitochondria 
to induce apoptosis in breast cancer cells with high levels of EGFR and/or HER2.  Second, in the course of 
understanding the effects of PUMA on EGFR, we found that PUMA knockdown increased EGFR 
expression. This interesting finding provides a rationale to further determine the impact of PUMA on EGFR 
and HER2 signaling. Third, we observed that both HER2 and EGFR interact with and phosphorylate PUMA 
in breast cancer cells. The interaction is constitutive independent of kinase activity while the interaction 
provides the opportunity for the receptors to phosphorylate PUMA. Finally, to gain insights into the 
consequences of PUMA tyrosine phosphorylation, we created three non-phosphorylation PUMA mutants, 
each with single YF mutation, and examined their ability to be phosphorylated by HER2 The results 
indicated that the single mutants had reduced phosphorylation, indicating that all three tyrosine residues 
within PUMA are targeted by HER2. This interesting finding has directed us to generate a PUMA mutant 
with triple YF mutations in order to determine HER2 effects on PUMA properties.  We are also examining 
the PUMA single mutants for EGFR phosphorylation. In summary, we have made considerate progress in 
the past year towards the objectives of this Award. The afore-mentioned promising results have built a 
strong foundation for us to further explore the HER2-PUMA and EGFR-PUMA crosstalks in breast cancer 
cells in the next award year. 
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